
 BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

AN0626EN V1.00 1 / 7 November 3, 2022

BC45F0023/BC68F3132 Hopping Code Engine
Application Note and Example

D/N: AN0626EN

Introduction

In anti-theft remote control applications such as car alarms, motorcycle alarms and electric rolling

door remote controls, manufacturers usually encrypt the remote control output data in order to

ensure that the remote control is not easily copied. Traditional remote controls use fixed codes for

their control method, however this makes it not too difficult to replicate the code using a few simple

copy devices. This offers no user safety guarantee.

To counteract this, Holtek's BC45F0023 and BC68F3132 devices contain an EEPROM and a

hopping code engine, which can be used to easily generate encrypted control data. The sync count

value in the hopping code can be stored in the EEPROM and the synchronisation state can be

maintained even after battery changes. This application note will take the BC45F0023 hopping code

encryption/decryption device as an example to illustrate how to generate hopping codes using the

hopping code engine with the synchronisation process. Users can also refer to this example to

design their own hopping code remote controls.

Operating Principle

A rolling code, also known as a hopping code, means that in situations where the input data is the

same, the output results are different for different triggers. To achieve this function, a variable is

required to be added into the encryption process, which changes each time it is triggered. A common

hopping code has two encryption types, Simple Learn and Normal Learn. Refer to Figure 1 to find

out more about their differences.

Normal Learn

Simple Learn

Encryption 2Encryption Key

Variable
(Sync Count Value)

Data

Hopping Code

Encryption 1

Manufacturer
Code

Serial Number

Figure 1

 BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

AN0626EN V1.00 2 / 7 November 3, 2022

An anti-theft remote control usually adds two pieces of information, one is the manufacturer code,

which usually represents the product company. For example, anti-theft remote controls made by

company A and company B can be distinguished using this code. The second is the Serial Number

– SN, which mostly indicates different remote controls. For example, there can be two rolling door

remote controls with different serial numbers, but both of them can control the same rolling door.

In this case the rolling door will be the receiver and must recognise the remote controls with these

two serial numbers as valid remote controls.

During the Simple Learn process, the manufacturer code is directly used as an encryption key.

During the Normal Learn process, the result is used as a key after calculating the code using the

Serial Number. The Manufacturer Code is a main key component during encryption, therefore it is

very important and needs to be managed carefully.

Variable

The sync count value is a key variable for generating the hopping code. It will increment every time

a hopping code is generated. When the receiver is not nearby, multiple bytes of transmitted data

will not necessarily be received. This will then cause the receiver to be out of sync. Therefore, it is

necessary to set a range of received values as "valid values" during decoding. If the received value

range is set to 16, the sync count value can be the previous received value plus 1~16. All values in

this range can be considered as valid values. In addition to valid values, another range value can be

defined as the reconfirmed value. If there is a value that is required to be reconfirmed, it will reduce

most of the out-of-sync situations due to abnormal power failure, battery replacement or being out

of synch for too long. The following figure shows how the 16-bit sync count value changes.

“Invalid value” area
32768~65535,0

“Reconfirmed value” area
17~32767

The previous received
value was 0

“Valid value” area 1~16

Count value
increments

Figure 2

Encryption

Encryption is an important process during the hopping code generation and uses an encryption

method known as "Nonlinear Feedback". This method is simple in structure, reliable in operation

and also can generate a nonlinear sequence. This makes it impossible for anyone to obtain the

encryption formula from the output data.

The BC45F0023 hopping code encryption/decryption device provides an integrated hopping code

engine, which is a nonlinear-feedback system. It contains a nonlinear-feedback shift register - NLFSR,

a nonlinear function register - NLF, a loop counter register - LOOPCNT and a hopping code engine

 BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

AN0626EN V1.00 3 / 7 November 3, 2022

key register - HPKEY. The user simply writes the corresponding value into these registers. After the

engine has started, when the feedback counter has finished counting, a set of nonlinear values can be

obtained, together with the sync count value. This is the hopping code system. Refer to the

corresponding MCU datasheet for the detailed operation process. The following sections will

introduce the hopping code generated process in the hopping code engine.

Example Program Description

Users have different requirements for encryption complexity. The following is a conceptual

architecture and users can design the protocol format according to their requirements. The following

section will describe the programming process for both the Simple Learn and Normal Learn

methods. The example program provided in this application note should be used with the HT-

IDE3000 simulation development tool to open the project.

Simple Learn Process

Simple Learn: Use a 64-bit manufacturer code as the encryption key. A 32-bit input data packet

consists of a 16-bit sync count code, a 12-bit serial number and a 4-bit control command. Then

select a 5-bit variable nonlinear function and aggregate its operation result into a 32-bit value for

use by the algorithm. Finally, the feedback times have to be determined. The higher the feedback

time value, the more time will be required by the encryption algorithm. The following figure shows

the parameter relationships for the Simple Learn.

HPE
(NLF, Loop Counter)

Manufacturer Code
(Encryption Key, 64-bit)

Variable
(Sync Count Value, 16-bit)

Hopping Code
(32-bit)

Control Command
(4-bit)

Serial Number
(12-bit)

32-bit Data

Figure 3

The follows describes how to use the hopping code engine. Write the feedback times into the

LOOPCNT register, the manufacturer code into the HPKEY register and the nonlinear function into

the NLF register. Write the sync count code, the serial number and the control command into the

NLFSR register. When the ENCDEC bit is cleared to 0 and then the HPEEN bit is set to 1, the

engine will then start to encrypt. When the HPEEN bit is automatically cleared to 0, the value stored

in the NLFSR register will now be the required hopping code. The complete process, including the

key trigger action, is shown as follows.

 BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

AN0626EN V1.00 4 / 7 November 3, 2022

Key Trigger

Sync count value+1

HPEEN=0 ?

Y

Read out NLFSR

N

Write into LOOPCNT,
HPKEY, NLF, NLFSR

Enable HPE
(HPEEN=1)

Figure 4

Simple Decryption Process

Simple Decryption: Write the received hopping codes into the NLFSR register and set the ENCDEC

bit to 1. The other registers must be the same as the written values during encryption. When the HPEEN

bit is set to 1, the engine will start to decrypt. When the HPEEN bit is automatically cleared to 0, the

value in the NLFSR register will be the original data. Then respectively read out the sync count code,

serial number and control command according to the corresponding position when encrypted.

Combined with the receive execution commands, the complete process is shown in the following figure.

Get the hopping code

HPEEN=0 ?

Y

Read out NLFSR and separate
sync count code, SN and

control command

N

Enable HPE
(ENCDEC=1, HPEEN=1)

Write into LOOPCNT,
HPKEY, NLF, NLFSR

SN correct and
Previous received value

<Sync<Valid value?

Y

Execute the corresponding
command

N

Figure 5

 BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

AN0626EN V1.00 5 / 7 November 3, 2022

Normal Learn Process

Normal Learn: The manufacturer code and serial number are used to execute the decryption

algorithm with its result being used as the encryption key. First, add 0x60000000 to the 28-bit serial

number to obtain a 32-bit value. This is combined with the 64-bit manufacturer code and the

decoding algorithm is then used to calculate the highest 32-bits of the key. In a similar way, add

0x20000000 to the 28-bit serial number and using the 64-bit manufacturer code and the decoding

algorithm, the lower 32-bits of the key is calculated. In this way, a complete 64-bit value is obtained

as the key. After that, encrypt and calculate using the Simple Learn, to generate the rolling code.

The following figure shows the parameter relationships during the Simple Learn.

Serial Number (28-bit)
+

 0x20000000
HPE*

(NLF, Loop Counter)

Manufacturer Code
(64-bit)

Encryption Key
(64-bit)

HPE*
(NLF, Loop Counter)

Serial Number(28-bit)
+

0x60000000

High 32-bit

Low 32-bit

HPE
(NLF, Loop Counter)

Variable
(Sync Count Value, 16-bit)

Hopping
Code (32-bit)

Control Command
(4-bit)

Serial Number
(Low 12-bit)

32-bit Data

*：Decryption Mode
Figure 6

Combined with the key trigger action, first calculate the key value, namely New HPKEY using the

manufacturer code and the serial number, and then store it. When a trigger event occurs, the Simple

Learn process will be executed. The complete process is shown in the following figure.

 Key Trigger

Write
Sync +1,

 SN lower 12-bit and control
command into NLFSR

HPEEN=0 ?

Y

Read out NLFSR

N

Write into LOOPCNT, New
HPKEY, NLF

Enable HPE
(ENCDEC=0, HPEEN=1)

Read out NLFSR
as New HPKEY

lower 32-bit

Step 2

Write
SN + 0x20000000

into NLFSR

HPEEN=0 ?

Y

N

Write into LOOPCNT,
HPKEY, NLF

Enable HPE
(ENCDEC=1, HPEEN=1)

Read out NLFSR
as New HPKEY

higher 32-bit

Step 1

Write
SN + 0x60000000

into NLFSR

HPEEN=0 ?

Y

N

Write into LOOPCNT,
HPKEY, NLF

Enable HPE
(ENCDEC=1, HPEEN=1)

Figure 7

 BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

AN0626EN V1.00 6 / 7 November 3, 2022

Normal Decryption Process

The normal decryption process is consistent with the simple decryption process, except that the

decryption key value must also be the same as the calculated key value during the Normal Learn.

The complete process is shown in the following figure.

Get the hopping code

HPEEN=0 ?

Y

Read out NLFSR and separate
sync count code, SN and

control command

N

Enable HPE
(ENCDEC=1, HPEEN=1)

Write into LOOPCNT, New
HPKEY, NLF, NLFSR

SN correct and
Previous received value

<Sync<Valid value?

Y

Execute the corresponding
command

N

Figure 8

Conclusion

This application note has taken the BC45F0023 as an example to introduce how to use the hopping

code engine to generate hopping codes. Users can obtain simple example programs for this from

the Holtek official website.

Reference File

Reference File: BC45F0023, BC68F3132 Datasheet.

For more information, consult the Holtek official website: www.holtek.com.

http://www.holtek.com/

 BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

AN0626EN V1.00 7 / 7 November 3, 2022

Revision and Modification Information
Date Author Issue Modification Information

2022.08.25 何信智 V1.00 First Version

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing

on this website ('Information') are for reference only and is subject to change at any time without

prior notice and at the discretion of Holtek Semiconductor Inc. and its related companies

(hereinafter 'Holtek', 'the company', 'us', 'we' or 'our'). Whilst Holtek endeavors to ensure the

accuracy of the Information on this website, no express or implied warranty is given by Holtek to

the accuracy of the Information. Holtek shall bear no responsibility for any incorrectness or leakage.

Holtek shall not be liable for any damages (including but not limited to computer virus, system

problems or data loss) whatsoever arising in using or in connection with the use of this website by

any party. There may be links in this area, which allow you to visit the websites of other companies.

These websites are not controlled by Holtek. Holtek will bear no responsibility and no guarantee to

whatsoever Information displayed at such sites. Hyperlinks to other websites are at your own risk.

Limitation of Liability

In no event shall Holtek Limited be liable to any other party for any loss or damage whatsoever or

howsoever caused directly or indirectly in connection with your access to or use of this website, the

content thereon or any goods, materials or services.

Governing Law

The Disclaimer contained in the website shall be governed by and interpreted in accordance with

the laws of the Republic of China. Users will submit to the non-exclusive jurisdiction of the

Republic of China courts.

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all

changes are effective immediately upon posting to the website.

	Introduction
	Operating Principle
	Variable
	Encryption

	Example Program Description
	Simple Learn Process
	Simple Decryption Process
	Normal Learn Process
	Normal Decryption Process

	Conclusion
	Reference File
	Revision and Modification Information
	Disclaimer

[image: 項目0031]Amendments

[image:] BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

BC45F0023/BC68F3132 Hopping Code Engine Application Note and Example

[bookmark: OLE_LINK1]D/N: AN0626EN

Introduction

[bookmark: OLE_LINK12][bookmark: OLE_LINK46][bookmark: OLE_LINK18][bookmark: OLE_LINK19][bookmark: OLE_LINK107][bookmark: OLE_LINK108]In anti-theft remote control applications such as car alarms, motorcycle alarms and electric rolling door remote controls, manufacturers usually encrypt the remote control output data in order to ensure that the remote control is not easily copied. Traditional remote controls use fixed codes for their control method, however this makes it not too difficult to replicate the code using a few simple copy devices. This offers no user safety guarantee.

[bookmark: OLE_LINK47][bookmark: OLE_LINK48][bookmark: _Hlk117087780][bookmark: OLE_LINK11][bookmark: OLE_LINK30][bookmark: OLE_LINK31][bookmark: OLE_LINK22][bookmark: OLE_LINK23]To counteract this, Holtek's BC45F0023 and BC68F3132 devices contain an EEPROM and a hopping code engine, which can be used to easily generate encrypted control data. The sync count value in the hopping code can be stored in the EEPROM and the synchronisation state can be maintained even after battery changes. This application note will take the BC45F0023 hopping code encryption/decryption device as an example to illustrate how to generate hopping codes using the hopping code engine with the synchronisation process. Users can also refer to this example to design their own hopping code remote controls.

Operating Principle

[bookmark: OLE_LINK32][bookmark: OLE_LINK33]A rolling code, also known as a hopping code, means that in situations where the input data is the same, the output results are different for different triggers. To achieve this function, a variable is required to be added into the encryption process, which changes each time it is triggered. A common hopping code has two encryption types, Simple Learn and Normal Learn. Refer to Figure 1 to find out more about their differences.

Figure 1

An anti-theft remote control usually adds two pieces of information, one is the manufacturer code, which usually represents the product company. For example, anti-theft remote controls made by company A and company B can be distinguished using this code. The second is the Serial Number – SN, which mostly indicates different remote controls. For example, there can be two rolling door remote controls with different serial numbers, but both of them can control the same rolling door. In this case the rolling door will be the receiver and must recognise the remote controls with these two serial numbers as valid remote controls.

During the Simple Learn process, the manufacturer code is directly used as an encryption key. During the Normal Learn process, the result is used as a key after calculating the code using the Serial Number. The Manufacturer Code is a main key component during encryption, therefore it is very important and needs to be managed carefully.

Variable

[bookmark: OLE_LINK34][bookmark: OLE_LINK35][bookmark: OLE_LINK110][bookmark: OLE_LINK109][bookmark: OLE_LINK60][bookmark: OLE_LINK61][bookmark: OLE_LINK111]The sync count value is a key variable for generating the hopping code. It will increment every time a hopping code is generated. When the receiver is not nearby, multiple bytes of transmitted data will not necessarily be received. This will then cause the receiver to be out of sync. Therefore, it is necessary to set a range of received values as "valid values" during decoding. If the received value range is set to 16, the sync count value can be the previous received value plus 1~16. All values in this range can be considered as valid values. In addition to valid values, another range value can be defined as the reconfirmed value. If there is a value that is required to be reconfirmed, it will reduce most of the out-of-sync situations due to abnormal power failure, battery replacement or being out of synch for too long. The following figure shows how the 16-bit sync count value changes.

Figure 2

Encryption

Encryption is an important process during the hopping code generation and uses an encryption method known as "Nonlinear Feedback". This method is simple in structure, reliable in operation and also can generate a nonlinear sequence. This makes it impossible for anyone to obtain the encryption formula from the output data.

The BC45F0023 hopping code encryption/decryption device provides an integrated hopping code engine, which is a nonlinear-feedback system. It contains a nonlinear-feedback shift register - NLFSR, a nonlinear function register - NLF, a loop counter register - LOOPCNT and a hopping code engine key register - HPKEY. The user simply writes the corresponding value into these registers. After the engine has started, when the feedback counter has finished counting, a set of nonlinear values can be obtained, together with the sync count value. This is the hopping code system. Refer to the corresponding MCU datasheet for the detailed operation process. The following sections will introduce the hopping code generated process in the hopping code engine.

Example Program Description

[bookmark: OLE_LINK4][bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK7]Users have different requirements for encryption complexity. The following is a conceptual architecture and users can design the protocol format according to their requirements. The following section will describe the programming process for both the Simple Learn and Normal Learn methods. The example program provided in this application note should be used with the HT-IDE3000 simulation development tool to open the project.

[bookmark: OLE_LINK74][bookmark: OLE_LINK75][bookmark: OLE_LINK43][bookmark: OLE_LINK44]Simple Learn Process

[bookmark: OLE_LINK2][bookmark: OLE_LINK3]Simple Learn: Use a 64-bit manufacturer code as the encryption key. A 32-bit input data packet consists of a 16-bit sync count code, a 12-bit serial number and a 4-bit control command. Then select a 5-bit variable nonlinear function and aggregate its operation result into a 32-bit value for use by the algorithm. Finally, the feedback times have to be determined. The higher the feedback time value, the more time will be required by the encryption algorithm. The following figure shows the parameter relationships for the Simple Learn.

Figure 3

[bookmark: OLE_LINK13][bookmark: OLE_LINK14][bookmark: OLE_LINK9][bookmark: OLE_LINK10]The follows describes how to use the hopping code engine. Write the feedback times into the LOOPCNT register, the manufacturer code into the HPKEY register and the nonlinear function into the NLF register. Write the sync count code, the serial number and the control command into the NLFSR register. When the ENCDEC bit is cleared to 0 and then the HPEEN bit is set to 1, the engine will then start to encrypt. When the HPEEN bit is automatically cleared to 0, the value stored in the NLFSR register will now be the required hopping code. The complete process, including the key trigger action, is shown as follows.

Figure 4

Simple Decryption Process

Simple Decryption: Write the received hopping codes into the NLFSR register and set the ENCDEC bit to 1. The other registers must be the same as the written values during encryption. When the HPEEN bit is set to 1, the engine will start to decrypt. When the HPEEN bit is automatically cleared to 0, the value in the NLFSR register will be the original data. Then respectively read out the sync count code, serial number and control command according to the corresponding position when encrypted. Combined with the receive execution commands, the complete process is shown in the following figure.

Figure 5

[bookmark: OLE_LINK76]Normal Learn Process

[bookmark: OLE_LINK81][bookmark: OLE_LINK82][bookmark: OLE_LINK15][bookmark: OLE_LINK16][bookmark: OLE_LINK27][bookmark: OLE_LINK86][bookmark: OLE_LINK87][bookmark: OLE_LINK85][bookmark: OLE_LINK83][bookmark: OLE_LINK84][bookmark: OLE_LINK17][bookmark: OLE_LINK20][bookmark: OLE_LINK21][bookmark: OLE_LINK26]Normal Learn: The manufacturer code and serial number are used to execute the decryption algorithm with its result being used as the encryption key. First, add 0x60000000 to the 28-bit serial number to obtain a 32-bit value. This is combined with the 64-bit manufacturer code and the decoding algorithm is then used to calculate the highest 32-bits of the key. In a similar way, add 0x20000000 to the 28-bit serial number and using the 64-bit manufacturer code and the decoding algorithm, the lower 32-bits of the key is calculated. In this way, a complete 64-bit value is obtained as the key. After that, encrypt and calculate using the Simple Learn, to generate the rolling code.

The following figure shows the parameter relationships during the Simple Learn.

[bookmark: OLE_LINK40][bookmark: OLE_LINK41]Figure 6

[bookmark: OLE_LINK42][bookmark: OLE_LINK45][bookmark: OLE_LINK38][bookmark: OLE_LINK39]Combined with the key trigger action, first calculate the key value, namely New HPKEY using the manufacturer code and the serial number, and then store it. When a trigger event occurs, the Simple Learn process will be executed. The complete process is shown in the following figure.

Figure 7

Normal Decryption Process

The normal decryption process is consistent with the simple decryption process, except that the decryption key value must also be the same as the calculated key value during the Normal Learn. The complete process is shown in the following figure.

Figure 8

Conclusion

This application note has taken the BC45F0023 as an example to introduce how to use the hopping code engine to generate hopping codes. Users can obtain simple example programs for this from the Holtek official website.

Reference File

Reference File: BC45F0023, BC68F3132 Datasheet.

For more information, consult the Holtek official website: www.holtek.com.

Revision and Modification Information

		Date

		Author

		Issue

		Modification Information

		2022.08.25

		[bookmark: _GoBack]何信智

		V1.00

		First Version

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing on this website ('Information') are for reference only and is subject to change at any time without prior notice and at the discretion of Holtek Semiconductor Inc. and its related companies (hereinafter 'Holtek', 'the company', 'us', 'we' or 'our'). Whilst Holtek endeavors to ensure the accuracy of the Information on this website, no express or implied warranty is given by Holtek to the accuracy of the Information. Holtek shall bear no responsibility for any incorrectness or leakage.

Holtek shall not be liable for any damages (including but not limited to computer virus, system problems or data loss) whatsoever arising in using or in connection with the use of this website by any party. There may be links in this area, which allow you to visit the websites of other companies. These websites are not controlled by Holtek. Holtek will bear no responsibility and no guarantee to whatsoever Information displayed at such sites. Hyperlinks to other websites are at your own risk.

Limitation of Liability

In no event shall Holtek Limited be liable to any other party for any loss or damage whatsoever or howsoever caused directly or indirectly in connection with your access to or use of this website, the content thereon or any goods, materials or services.

Governing Law

The Disclaimer contained in the website shall be governed by and interpreted in accordance with the laws of the Republic of China. Users will submit to the non-exclusive jurisdiction of the Republic of China courts.

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all changes are effective immediately upon posting to the website.

2

	

[bookmark: OLE_LINK8][bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: _Hlk431588889]AN0626EN V1.00	7 / 7	November 3, 2022

image2.emf

³Invalid value´ area32768~65535,0³Reconfirmed value´ area17~32767The previous received value was 0³Valid value´ area 1~16Count value increments

Microsoft_Visio___1.vsdx

“Invalid value” area
32768~65535,0
“Reconfirmed value” area
17~32767
The previous received value was 0
“Valid value” area 1~16
Count value increments

image3.emf

HPE(NLF, Loop Counter)Manufacturer Code(Encryption Key, 64-bit)Variable(Sync Count Value, 16-bit)Hopping Code(32-bit)Control Command(4-bit)Serial Number(12-bit)32-bit Data

Microsoft_Visio___2.vsdx

HPE
(NLF, Loop Counter)
Manufacturer Code
(Encryption Key, 64-bit)
Variable
(Sync Count Value, 16-bit)
Hopping Code
(32-bit)
Control Command
(4-bit)
Serial Number
(12-bit)
32-bit Data

image4.emf

Key TriggerSync count value+1HPEEN=0 ?YRead out NLFSRNWrite into LOOPCNT, HPKEY, NLF, NLFSREnable HPE(HPEEN=1)

Microsoft_Visio___3.vsdx

Key Trigger
Sync count value+1
HPEEN=0 ?
Y
Read out NLFSR
N
Write into LOOPCNT, HPKEY, NLF, NLFSR
Enable HPE
(HPEEN=1)

image5.emf

Get the hopping codeHPEEN=0 ?YRead out NLFSR and separate sync count code, SN and control command NEnable HPE(ENCDEC=1, HPEEN=1)Write into LOOPCNT, HPKEY, NLF, NLFSRSN correct andPrevious received value <Sync<Valid value?YExecute the corresponding commandN

Microsoft_Visio___4.vsdx

Get the hopping code
HPEEN=0 ?
Y
Read out NLFSR and separate sync count code, SN and control command
N
Enable HPE
(ENCDEC=1, HPEEN=1)
Write into LOOPCNT, HPKEY, NLF, NLFSR
SN correct and
Previous received value <Sync<Valid value?
Y
Execute the corresponding command
N

image6.emf

Serial Number (28-bit) + 0x20000000HPE*(NLF, Loop Counter)Manufacturer Code(64-bit)Encryption Key (64-bit)HPE*(NLF, Loop Counter)Serial Number(28-bit)+0x60000000High 32-bitLow 32-bitHPE(NLF, Loop Counter)Variable(Sync Count Value, 16-bit)Hopping Code (32-bit)Control Command(4-bit)Serial Number(Low 12-bit)32-bit Data*：Decryption Mode

Microsoft_Visio___5.vsdx

Serial Number (28-bit)
+
 0x20000000
HPE*
(NLF, Loop Counter)
Manufacturer Code
(64-bit)
Encryption Key
(64-bit)
HPE*
(NLF, Loop Counter)
Serial Number(28-bit)
+
0x60000000
High 32-bit
Low 32-bit
HPE
(NLF, Loop Counter)
Variable
(Sync Count Value, 16-bit)
Hopping Code (32-bit)
Control Command
(4-bit)
Serial Number
(Low 12-bit)
32-bit Data
*：Decryption Mode

image7.emf

 Key TriggerWrite Sync +1, SN lower 12-bit and control command into NLFSRHPEEN=0 ?YRead out NLFSRNWrite into LOOPCNT, New HPKEY, NLFEnable HPE(ENCDEC=0, HPEEN=1)Read out NLFSR as New HPKEY lower 32-bit Step 2Write SN + 0x20000000into NLFSRHPEEN=0 ?YNWrite into LOOPCNT, HPKEY, NLFEnable HPE(ENCDEC=1, HPEEN=1)Read out NLFSR as New HPKEY higher 32-bit Step 1Write SN + 0x60000000into NLFSRHPEEN=0 ?YNWrite into LOOPCNT, HPKEY, NLFEnable HPE(ENCDEC=1, HPEEN=1)

Microsoft_Visio___6.vsdx

Key Trigger
Write
Sync +1,
 SN lower 12-bit and control command into NLFSR
HPEEN=0 ?
Y
Read out NLFSR
N
Write into LOOPCNT, New HPKEY, NLF
Enable HPE
(ENCDEC=0, HPEEN=1)
Read out NLFSR as New HPKEY lower 32-bit
Step 2
Write
SN + 0x20000000
into NLFSR
HPEEN=0 ?
Y
N
Write into LOOPCNT, HPKEY, NLF
Enable HPE
(ENCDEC=1, HPEEN=1)
Read out NLFSR as New HPKEY higher 32-bit
Step 1
Write
SN + 0x60000000
into NLFSR
HPEEN=0 ?
Y
N
Write into LOOPCNT, HPKEY, NLF
Enable HPE
(ENCDEC=1, HPEEN=1)

image8.emf

Get the hopping codeHPEEN=0 ?YRead out NLFSR and separate sync count code, SN and control command NEnable HPE(ENCDEC=1, HPEEN=1)Write into LOOPCNT, New HPKEY, NLF, NLFSRSN correct andPrevious received value <Sync<Valid value?YExecute the corresponding commandN

Microsoft_Visio___7.vsdx

Get the hopping code
HPEEN=0 ?
Y
Read out NLFSR and separate sync count code, SN and control command
N
Enable HPE
(ENCDEC=1, HPEEN=1)
Write into LOOPCNT, New HPKEY, NLF, NLFSR
SN correct and
Previous received value <Sync<Valid value?
Y
Execute the corresponding command
N

image1.emf

Normal LearnSimple LearnEncryption 2Encryption KeyVariable(Sync Count Value)DataHopping CodeEncryption 1Manufacturer CodeSerial Number

Microsoft_Visio___.vsdx

Normal Learn
Simple Learn
Encryption 2
Encryption Key
Variable
(Sync Count Value)
Data
Hopping Code
Encryption 1
Manufacturer Code
Serial Number

image9.wmf

image10.PNG

