
 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 1 / 13 July 21, 2021

Holtek MCU UL / IEC 60730 Certification
Measures

D/N: AN0584EN

Introduction

The International Electrotechnical Commission (IEC) has produced the safety standard IEC 60730

for household appliance development.

The IEC 60730-1 Standard (Automatic Electrical Controls for Household and Similar Use – Part 1:

General Requirements) defines the test and diagnostic methods that ensure the safe operation of the

controlled equipment used in household appliances. According to this standard, designers of

household appliances must ensure that no injuries or damage to surrounding properties occur during

product normal use or in the case of careless or incorrect operation by the user. Annex H is the key

part of the standard which classifies the software into three categories: Class A, B and C. Household

appliance manufacturers must design their products in accordance with the rules of these three

classes.

According to the standard and the actual situation of different ICs, this document will offer

recommendations for measures to assist users’ products to pass the IEC 60730 certification. It will

also explain the corresponding clauses in the IEC 60730 and test contents to help users understand

the requirements of each test item more clearly, so that they can develop targeted self-test programs

to accelerate the process to obtain certification.

Functional Description

The IEC 60730 standard defines three classes of household appliances, the differences between

them are as follows.

Class A: This class is for situations where appliance safety does not rely on software or where the

appliances will not cause injuries, an example of which could be LED lighting products. As no

software certification is required, this class will not be explained in this document.

Class B: Control functions to prevent injuries due to unsafe operation of household appliances, such

as electronically controlled washing machine door locks, motor thermal shutdown mechanisms etc.

Class C: Control functions to prevent special hazards such as hazardous explosions which may

occur in electronic ignition gas stoves.

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 2 / 13 July 21, 2021

Class B Test Summary Table
Item Component/Function Fault/Error Certification Measures Definition

1.1 CPU/Registers Stuck-at fault

Periodic self-test using static
memory test – uses data 0x55,
0xAA to check each CPU
register

H.2.19.6

1.3
2
3

6.3

CPU/Program counter
Interrupt handling and execution
Clock
External communication/Timing

Stuck-at fault
No interrupt or too frequent interrupt
Wrong frequency
Wrong point in time/wrong sequence

Independent time-slot
monitoring and logical
monitoring

H.2.18.10.3

4.1
4.3
5.1
5.2

Invariable memory
Addressing to invariable memory
Internal data path to invariable memory
Addressing to invariable memory

All single bit faults
Stuck-at fault
Stuck-at fault
Wrong address

Periodic modified checksum
or
Periodic CRC-16 check

H.2.19.3.1

H.2.19.4.2

4.2
4.3
5.1
5.2

Variable memory
Addressing to variable memory
Internal data path to variable memory
Addressing to variable memory

DC fault
Stuck-at fault
Stuck-at fault
Wrong address

Periodic self-test using static
memory test – March C-
algorithm or March X
algorithm

H.2.19.6

6.1
6.2

External communication/Data
External communication/Addressing

Hamming distance ≥ 3
Wrong address

Transfer redundancy including
data, address – positive code
and inverse code

H.2.18.2.2

7.1
7.2.1
7.2.2
5.1
5.2

Digital I/O
Analog I/O (A/D and D/A)
Analog multiplexer
Internal data path to I/O component
Addressing to I/O component

Fault conditions specified in H.27
Fault conditions specified in H.27
Wrong addressing
Stuck-at fault
Wrong address

Plausibility check H.2.18.13

 Watchdog (independent clock source) Too fast/too slow/clock stuck Reset CPU after time-out –
test once after power-on

Class C Test Summary Table
Item Component/Function Fault/Error Certification Measures Definition

1.1 CPU/Registers DC fault Periodic self-test using
walkpat memory test H.2.19.7

1.2 CPU/Instruction decoding and execution Wrong decoding and execution Periodic self-test using
equivalence class test H.2.18.5

1.3
2
3

CPU/Program counter
Interrupt handling and execution
Clock

DC fault
No interrupt or too frequent interrupt
Wrong frequency

Independent time-slot
monitoring and logical
monitoring

H.2.18.10.3

1.4
1.5

CPU/Addressing
Data paths instruction decoding

DC fault
DC fault and wrong execution

Covered by 1.2, 4.3, 5.1,
5.2

4.1
4.3
5.1
5.2

Invariable memory
Addressing to invariable memory
Internal data path to invariable memory
Addressing to invariable memory

99.6% coverage of all information errors
DC fault
DC fault
Wrong addressing and multiple addressing

Periodic CRC-16 check H.2.19.4.2

4.2
4.3
5.1
5.2

Variable memory
Addressing to variable memory
Internal data path to variable memory
Addressing to variable memory

DC fault and cross links
DC fault
DC fault
Wrong addressing and multiple addressing

Periodic self-test using
walkpat memory test H.2.19.7

6.1
6.2

External communication/Data
External communication/Addressing

Hamming distance ≥ 4
Wrong and multiple addressing

CRC-16 check including
data, address H.2.19.4.2

6.3 External communication/Timing Wrong point in time/wrong sequence Time-slot monitoring H.2.18.10.4
7.1

7.2.1
7.2.2
5.1
5.2

Digital I/O
Analog I/O (A/D and D/A)
Analog multiplexer
Internal data path to I/O component
Addressing to I/O component

Fault conditions specified in H.27
Fault conditions specified in H.27
Wrong addressing
DC fault
Wrong addressing and multiple addressing

Testing pattern for
input/output H.2.18.22

 Watchdog (independent clock source) Too fast/too slow/clock stuck Reset CPU after time-out
– test once after power-on

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 3 / 13 July 21, 2021

The two common fault types involved in the IEC 60730 regulations are described below.

Stuck-at Fault: Due to impurities, CMOS gate oxide breakage, electrostatic damage, etc., the memory

cells or signal lines are open-circuited or short-circuited – Stuck Open / Stuck at 1/ Stuck at 0.

DC Fault: Multiple fault models between the memory cells or signal lines including stuck-at fault,

bridging fault, etc.

Class B Certification Measures

Watchdog

Test Definition: Although not specified in the IEC 60730, regarding the watchdog integrated in the

same wafer as the MCU, it is usually required to test whether it is operating normally to avoid the

situation that the reset time is too short or too long or the watchdog is stuck. It is also required to

use an independent clock source different from the system clock, such as a 32kHz LIRC clock or a

32768Hz crystal clock, to ensure that the MCU’s input/output ports can be asynchronously and

correctly reset to a known and safe state if necessary.

Certification Measure: Execute this test once after MCU power-on and before running other

programs. Considering the system clock error as well as the frequency shift under different voltage

and temperature conditions, the acceptable error range of the watchdog time-out should be

appropriately expanded. Refer to the following flowchart.

Power On

Watchdog
time-out reset ?

Clear watchdog
once

Delay time =
watchdog time-out -

error time

Watchdog
time-out reset ?

Delay time =
error time × 2

Watchdog
time-out reset ?

Error Processing
Program

main function

Total time =
watchdog time-out

+ error time

Watchdog
error flag = 1 ?

Set watchdog error
flag to 1 in advance

Clear watchdog
error flag

When watchdog
resets, RAM data
will be retained

Y

N

N

Y

N Y N

Y

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 4 / 13 July 21, 2021

CPU Registers

Test Definition: Static Memory Test – a fault/error control technique which is intended to detect

only static errors.

Certification Measure: Starting from the ACC register, fill all the CPU registers with 0x55 and

0xAA respectively (some certification bodies may require additional data of 0x00 and 0xFF),

except for some special purpose registers that may cause CPU abnormities. Then read the register

contents and make comparisons to test whether the registers are working normally or not.

CPU Program Counter, Interrupt Handling and Execution, Clock, External
Communication Timing

Test Definition: Independent Time-slot and Logical Monitoring – a fault/error control technique in

which timing devices with an independent time base are periodically triggered in order to monitor

the program function and sequence.

Certification Measure: Token passing method.

CPU Program Counter

A unique token variable can be defined and each subroutine has its own unique token number. Then

pass the token through the subroutines and make comparisons to confirm that the subroutines are

executed in order. Considering that the memory itself may be faulty, it is necessary to set an inverse

code of the token to verify the correctness of the token itself.

Furthermore, first determine the actual run time of the subroutine, then periodically query the token

within a fixed time interruption, and compare the token with its previous value to check whether

the program remains in the subroutine for too long.

Power On

System Initialisation

Token=0,
Inverse code = one’s

complement of 0

Subroutine 1

Subroutine N

……

Subroutine N

Token=N-1 ?

Token matches
inverse code ?

Token=N,
Inverse code = one’s

complement of N

Token=N ?

Token matches
inverse code ?

Return

Error Processing
Program

Subroutine 2 User Program

Y

N

N

Y

N

Y

N

Y

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 5 / 13 July 21, 2021

Interrupt and System Clock

Due to the randomness of interrupt occurrences, it is more difficult to implement monitoring. A

unique token should be defined for each interrupt, which is used to record the enter times to the

present interrupt. Then check the number of occurrences of other interrupts within a periodic

interrupt of an independent clock, which is to determine whether there are frequent interrupts or

whether no interrupt has occurred.

Two timed interrupts are required in order to monitor the system clock. One uses the system clock

as a time base and the other uses an independent clock. The two timed interrupts cross-validate the

number of interrupts to detect whether the system clock frequency exceeds the specification.

Timed
Inte rrupt 1

System freq.
error normal ?

Error Processing
Program

A interrupt
normal ?

B inte rrupt
normal ?

Return

Timed Interrupt 2

Inte rrupt 2 times +1, used to
calculate system frequency

B Interrupt

B inte rrupt times +1

A Inte rrupt

A interrupt times +1

System Clock
Source

Independent
Clock Source

Y

Y

Y

N

N

N

Invariable Memory

Test Definition: Modified Checksum – a fault/error control technique in which a single word

representing the contents of all words in the memory is generated and saved. During the self-test, a

checksum is formed from the same algorithm and compared with the saved checksum. This

technique recognises all the odd errors and some of the even errors.

CRC-double Word – a fault/error control technique in which at least two words are generated to

represent the memory contents. During the self-test, the same algorithm is used to generate the same

number of signature words which are compared with the saved words. The CRC-16 algorithm of

invariable memory ensures that there is no single bit fault.

Certification Measure: Modified Checksum is recommended for the HT8 series while the CRC-16

algorithm is recommended for the HT32 series. The checksum/CRC signature is pre-stored in the

EEPROM or Flash memory.

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 6 / 13 July 21, 2021

For the HT8 series of MCUs, the Flash data is composed of a high byte and a low byte and the

checksum generated by the compiler also includes two bytes. Refer to the following formula:

CheckSum16 = CheckSum16 + Flash High Byte + Flash Low Byte

The initial value of CheckSum16 is 0x0000. The calculation result, if correct, will be equal to the

“Program Checksum” generated by the compiler.

For the HT32 series of MCUs, CRC16-CCITT – x16+x12+x5+1 is recommended. A CRC signature

for a 32KB Flash capacity is recommended, which can provide a more reliable detection of single

bit fault. If the Flash capacity is larger than 32KB, multiple CRC signatures are allowed. The

hardware CRC function is suggested if the Flash capacity is larger than 64KB as the software

calculation incurs a greater cost in time.

The following are three methods for CRC software calculation.

1. Calculation in bits: Execute a modulo two division using the first bit of the data and the

polynomial to get a remainder. Then shift the remainder to the right by one bit and add the

second bit (an addition without carry), then use the result to execute a modulo two division with

the polynomial. Follow this way until all the bits have been utilised for the calculation. This

method occupies a small space but results in a large calculation amount, which is not

recommended for use.

2. Calculation in bytes: Work out 256 16-bit CRC codes corresponding to 0x00~0xFF in advance,

which are stored in the Flash memory. Then the program can directly call these CRC codes to

execute calculation in bytes. This method occupies a larger space but requires a smaller

calculation amount, which is recommended for use.

3. Calculation in half-bytes: Only 16 CRC codes corresponding to 0x0~0xF are required to be

stored, the occupied space of which is only 1/16 of the byte calculation method and the

calculation amount of which is approximately doubled. This is a compromise between the

calculation amount and occupied space.

Variable Memory

Test Definition: Marching Memory Test – a static memory test in which data is written to the

memory area under test as in a normal operation. Every cell is then inspected in ascending order

and a bit inversion performed on the contents. The inspection and bit inversion are then repeated in

descending order.

Certification Measure: Transparent March C- or March X algorithm and dynamic redundancy check

of global variables.

The variable memory can be roughly simplified into several functional modules, which are memory

matrix, row address decoder, column address decoder, multiplexer, and read/write driving circuit.

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 7 / 13 July 21, 2021

Address Register Column Address
Decoder

Row Address
Decoder

Read Amplifier

Write Driver

Data Register

Read/Write and
Chip Enable

Address

Data
Output

Data
Input

Memory
Matrix

Figure 1. Variable Memory Functional Modules

The memory has a complicated structure and there are also complicated fault models corresponding

to it, as shown in the following table.

Fault Model Fault Description

SAF (Stuck-At Fault)
The memory cells or signal lines remain stuck at a certain logic value –
constant 0 or constant 1. It is a common fault in memory manufacturing at
present.

TF (Transition Fault) The memory cell cannot be changed from 0 to 1 or from 1 to 0.

CF (Coupling Fault)

Changing the data of cell i causes data transition of cell j. The coupling
problem of two adjacent cells can be divided into the following three
situations:
 CFin – inversion: reading from or writing to memory cell i causes data

inversion of cell j
 CFid – idempotent: reading from or writing to memory cell i causes the data

of cell j to be fixed at 0 or 1
 CFst – state: writing a constant logic value of 0 or 1 to memory cell i causes

a read/write error on cell j
BF (Bridging Fault) Fault of adjacent memory units due to bridging.

RF (Retention Fault) The memory cell cannot maintain its initial logic value after a period of time
(T).

AF (Address decoder Fault)*

There are four situations: one address cannot be used to access any memory
cell; one address can access multiple memory cells; one memory cell cannot
be accessed by any address; one memory cell can be accessed by multiple
addresses.

Read/Write Circuit Fault* Generally appears as a stuck-at fault or a bridging fault.

* Note: Address decoder faults and read/write circuit faults, which can be modeled and mapped as

memory cell faults, will not be detected separately.

With regard to memory faults, there are multiple test algorithms, among which the March algorithm

is a commonly used one. Its basic principle is to use a finite state machine to read from and write

to all bits one by one. The instructions of this algorithm are relatively simple, only including reading

and writing 0/1 as well as address changes. Through continuous reading and writing operations of

the memory, almost all memory faults can be detected.

In order to improve the test efficiency, different test steps can be used to derive many variants such

as MATS, March C+, March C, March C-, March X, etc., on the March algorithm basis.

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 8 / 13 July 21, 2021

The March C- and March X algorithms are suggested according to the program complexity and

fault coverage, as shown below.

Algorithm Fault Coverage Algorithm Steps
March C- SAF, AF, TF, CF (w0); ↑(r0,w1); ↑(r1,w0); ↓(r0,w1); ↓(r1,w0); (r0)
March X SAF, AF, TF, CFin ↑(w0); ↑(r0,w1); ↓(r1,w0); ↓(r0)

In the above algorithm steps, the meaning of each symbol is as follows.

Symbol Meaning
↑ Address ascending order – from address 0 to address (n-1)
↓ Address descending order – from address (n-1) to address 0

No arrow Optional address in ascending or descending order

() Single test step – perform read/write operations on a single cell in the order shown in the
bracket

w0, w1 Write 0 or 1 to a single cell
r0, r1 Read from a single cell and verify whether the value is 0 or 1

For example, ↑(r0,w1) means starting from address 0, read and verify whether its data is “0”, then

write “1” to address 0. Increase to address 1 and perform read and write operations to the address.

Repeat this procedure until all addresses have been tested.

Data test using traditional March algorithm is performed in bits.

Since the variable RAM is arranged in bytes, it is required to expand the test data in order to improve the

test efficiency and fault coverage. The expanded data is called data background. Now W1 represents to

write a forward data background and W0 represents to write an inverse data background.

8-bit Data Background

Forward Data Background Inverse Data Background
00000000 11111111
01010101 10101010
00110011 11001100
00001111 11110000

32-bit Data Background

Forward Data Background Inverse Data Background
00000000000000000000000000000000 11111111111111111111111111111111
01010101010101010101010101010101 10101010101010101010101010101010
00110011001100110011001100110011 11001100110011001100110011001100
00001111000011110000111100001111 11110000111100001111000011110000
00000000111111110000000011111111 11111111000000001111111100000000
00000000000000001111111111111111 11111111111111110000000000000000

Either the March C- or March X test will overwrite the original RAM data. The IEC 60730 standard

is required to perform periodic tests, which means that only one test after power-on is insufficient.

Therefore, a proper measure called a transparent test should be used in order to not overwrite the

original RAM data.

The transparent test needs to divide the RAM into several areas. For example, the RAM is divided

into three areas, RAM1, RAM2 and RAM3, among which RAM3 will be a test backup area which

is only used to back up the data of other RAM areas during the test. After performing a March test

in RAM3, back up the data of RAM1 to RAM3, perform a March test and restore the data. Then

execute the same test sequence for RAM2. Disable the interrupt functions before starting the test to

avoid the interrupted data becoming abnormal.

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 9 / 13 July 21, 2021

RAM1
RAM2
March

RAM1
RAM2
RAM1 RAM1

RAM2
March

RAM1
RAM2
RAM1 RAM1

RAM2
RAM2 RAM2

RAM1
March

RAM2
RAM2
RAM1

RAM1 copy to
RAM3,

Verify data

RAM1
March test

RAM3 copy to
RAM1,

Verify data

RAM2 copy to
RAM3,

Verify data

RAM2
March test

RAM3 copy to
RAM2,

Verify data

RAM3
March test

1 2 3 4 5 6 7

Figure 2. Transparent March Test

As the March algorithm test needs a longer time, the whole test can be divided into several

fragments and only one RAM area is tested each time. This can avoid situations where the MCU

resources are occupied for a long period of time.

The test mentioned above can only detect memory static faults. If any dynamic fault occurs on the

memory, i.e., the data stored in the memory is changed without resulting in physical damage to the

memory. This could be due to external radiation interference which causes certain memory data to

change value, here a dynamic redundancy check method should be used to ensure the data stability.

A dynamic redundancy check of global variables means to store global variables, especially those

safety-relevant variables, in an inverse code format into a physical area reserved for redundant

storage.

Users need to divide the entire memory into at least three areas:

Area1: Temporary variable area or for compiler use

Area2: Global variable storage area

Area3: Global variable redundancy area

When storing data, first store the data into Area2, then store the inverse code of the data into the

corresponding location in Area3. When reading data, read out the data of the corresponding location

in Area2 and Area3 simultaneously, then check whether they are the inverse code of each other. If

yes, continue the operation, otherwise, enter the error processing program.

External Communication

Test Definition: Transfer Redundancy – a form of code safety in which data is transferred at least

twice in succession and then compared. This technique can recognise intermittent errors.

Hamming Distance – a statistical measure representing the capability of code to detect and correct

errors. The Hamming distance of two code words is equal to the number of positions different in

the two code words, for example, the Hamming distance of “1011101” and “1001001” is 2.

Certification Measure: The transmitter sends an address and data followed by a corresponding

inverse code. The receiver compares the consistency of the two to check whether the data transfer

is correct after receiving the data.

Additionally, a checksum or CRC signature can be added at the end of a group of data. In this way

the transfer correctness can be checked only using one group of data.

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 10 / 13 July 21, 2021

I/O

Test Definition: Plausibility Check – a fault/error control technique in which inputs or outputs are

checked for inadmissible data.

Testing Pattern – a fault/error control technique used for periodic testing of the input units, output units

and interfaces of the controller. A test pattern is introduced to the unit and the results are compared to

the expected values. Mutually independent means for introducing the test pattern and evaluating the

results are used. The test patterns are constructed so as not to influence correct control operation.

Certification Measure: Use plausibility check to detect the specified fault status.

For digital I/Os, select an appropriate I/O to output 0 or 1 and then check whether the I/O status is

abnormal and whether there is a short circuit or an open circuit between the I/O and the power

supply. For critical signal pins that may cause danger, redundant input pins can be used to check

whether the signal status is normal.

For analog I/Os, input a constant voltage and perform an A/D conversion, then check whether the

converted value is within an acceptable range.

Class C Certification Measures

Watchdog, PC Pointer, Interrupt, Clock, Invariable Memory, External
Communication, I/O

Use the same or similar test measures as Class B.

Instruction Decoding and Execution

Test Definition: Equivalence Class Test – a systematic test intended to determine whether the

instruction decoding and execution are performed correctly. The test data is derived from the CPU

instruction specification.

Certification Measure: Instructions are classified as follows:

 Move instructions

 Operation instructions

 Bit and Rotate instructions

 Conditional processing instructions

 Other instructions

Similar instructions are grouped and the input data set is subdivided into specific data intervals

(equivalence classes). Each instruction within a group processes at least one set of test data so that

the entire group processes the entire test data set. The test data can be formed from the following:

 Data from a valid range

 Data from an invalid range

 Data from the boundaries

 Extreme values and their combinations

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 11 / 13 July 21, 2021

Variable Memory

Test Definition: Walkpat Memory Test – a fault/error control technique in which a standard data

pattern is written to the memory area under test as in normal operations. A bit inversion is performed

on the first cell and the remaining memory area is inspected. Then the first cell is again inverted and

the memory inspected. This process is repeated for all memory cells under test. A second test is

conducted by performing a bit inversion of all cells in the memory under test and proceeding as

above. This technique recognises all static bit errors as well as errors in interfaces between memory

cells.

Certification Measure: Transparent walkpat test using logic “1” and “0” and dynamic redundancy

check of global variables.

The situations where memory cells are in an incorrect state due to the different operations of the

adjacent cells in a nine-rectangle-grid, is called Neighborhood Pattern Sensitive Faults (NPSF). The

main cause of NPSF is the mutual interference between high-density storage cells. The NPSF

detection actually includes detection of stuck-at fault, coupling fault and other types of memory

faults.

Figre 3

For the walkpat test using logic “1”, first clear the entire RAM to 0, then set the highest bit of the

first byte to “1” and check whether the adjacent bits have experienced any changes. Next, right shift

the “1” by one bit and check if any adjacent bits have changed state. Repeat the shift operation

seven times until the lowest bit has been checked. Then move on to the highest bit of the next byte.

Repeat this procedure until the entire RAM has been checked.

During this test, the logic “1” is shifted through the entire RAM step by step from left to right and

from top to bottom.

0

b

0 0 0 000 0

0 0 0 0 000 0
0 0 0 0 000 0

1 0 0 0 000 0

7
b
6

b
5

b
4

b
0

b
1

b
3

b
2

byte A
byte B
byte C
byte D

0

b

0 0 0 000 0

0 0 0 0 000 0
0 0 0 0 000 0

0 1 0 0 000 0

7
b
6

b
5

b
4

b
0

b
1

b
3

b
2

0

b

0 0 0 000 0

0 0 0 0 000 0
0 0 0 0 000 0

0 0 1 0 000 0

7
b
6

b
5

b
4

b
0

b
1

b
3

b
2

0

b

0 0 0 000 0

0 0 0 0 000 0
0 0 0 0 000 0

0 0 0 1 000 0

7
b
6

b
5

b
4

b
0

b
1

b
3

b
2

Figure 4

Similar to the above test, the walkpat test using logic “0” is performed by first setting the entire

RAM to “1” and then shifting “0” step by step from left to right then from top to bottom.

1

b

1 1 1 111 1

1 1 1 1 111 1
1 1 1 1 111 1

0 1 1 1 111 1

7
b
6

b
5

b
4

b
0

b
1

b
3

b
2

byte A
byte B
byte C
byte D

1

b

1 1 1 111 1

1 1 1 1 111 1
1 1 1 1 111 1

1 0 1 1 111 1

7
b
6

b
5

b
4

b
0

b
1

b
3

b
2

1

b

1 1 1 111 1

1 1 1 1 111 1
1 1 1 1 111 1

1 1 0 1 111 1

7
b
6

b
5

b
4

b
0

b
1

b
3

b
2

1

b

1 1 1 111 1

1 1 1 1 111 1
1 1 1 1 111 1

1 1 1 0 111 1

7
b
6

b
5

b
4

b
0

b
1

b
3

b
2

Figure 5

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 12 / 13 July 21, 2021

In the same way as the March algorithm test, the walkpat test will also overwrite the original RAM

data. Therefore, it is also necessary to divide the RAM, and then follow the three steps of data

backup, walkpat test and data recovery to execute the transparent test and dynamic redundancy

check of global variables. For more details, refer to the Invariable Memory section of Class B.

Conclusion

This document has provided some recommended measures based on the IEC 60730 standard and

the actual situation of Holtek MCUs, which will assist users’ products to pass the IEC 60730

certification. It has also given a detailed introduction and explanation of some clauses in the IEC

60730 and the corresponding test measures. Users can clearly understand the various test items

without the need to read the IEC 60730 text and look for certification measures, and develop

targeted self-test programs to speed up the certification process.

Reference Material

“IEC 60730-1: Automatic Electrical Controls for Household and Similar Use”, fourth edition, 2009

HT8 and HT32 series of MCUs’ datasheet and user manual.

Versions and Modification Information

Date Author Version
2021.05.18 陈康超(chad) V1.00

 Holtek MCU UL / IEC 60730 Certification Measures

AN0584EN V1.00 13 / 13 July 21, 2021

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing

on this website ('Information') are for reference only and is subject to change at any time without

prior notice and at the discretion of Holtek Semiconductor Inc. and its related companies

(hereinafter 'Holtek', 'the company', 'us', 'we' or 'our'). Whilst Holtek endeavors to ensure the

accuracy of the Information on this website, no express or implied warranty is given by Holtek to

the accuracy of the Information. Holtek shall bear no responsibility for any incorrectness or leakage.

Holtek shall not be liable for any damages (including but not limited to computer virus, system

problems or data loss) whatsoever arising in using or in connection with the use of this website by

any party. There may be links in this area, which allow you to visit the websites of other companies.

These websites are not controlled by Holtek. Holtek will bear no responsibility and no guarantee to

whatsoever Information displayed at such sites. Hyperlinks to other websites are at your own risk.

Limitation of Liability

In no event shall Holtek Limited be liable to any other party for any loss or damage whatsoever or

howsoever caused directly or indirectly in connection with your access to or use of this website, the

content thereon or any goods, materials or services.

Governing Law

This disclaimer is subjected to the laws of the Republic of China and under the jurisdiction of the

Court of the Republic of China.

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all

changes are effective immediately upon posting to the website.

	Introduction
	Functional Description
	Class B Test Summary Table
	Class C Test Summary Table

	Class B Certification Measures
	Watchdog
	CPU Registers
	CPU Program Counter, Interrupt Handling and Execution, Clock, External Communication Timing
	CPU Program Counter
	Interrupt and System Clock

	Invariable Memory
	Variable Memory
	External Communication
	I/O

	Class C Certification Measures
	Watchdog, PC Pointer, Interrupt, Clock, Invariable Memory, External Communication, I/O
	Instruction Decoding and Execution
	Variable Memory

	Conclusion
	Reference Material
	Versions and Modification Information
	Disclaimer
	Limitation of Liability
	Governing Law
	Update of Disclaimer

[image: 項目0031]Amendments

[image: HTKlogo] Holtek MCU UL / IEC 60730 Certification Measures

[bookmark: OLE_LINK1]Holtek MCU UL / IEC 60730 Certification Measures

D/N: AN0584EN

Introduction

The International Electrotechnical Commission (IEC) has produced the safety standard IEC 60730 for household appliance development.

The IEC 60730-1 Standard (Automatic Electrical Controls for Household and Similar Use – Part 1: General Requirements) defines the test and diagnostic methods that ensure the safe operation of the controlled equipment used in household appliances. According to this standard, designers of household appliances must ensure that no injuries or damage to surrounding properties occur during product normal use or in the case of careless or incorrect operation by the user. Annex H is the key part of the standard which classifies the software into three categories: Class A, B and C. Household appliance manufacturers must design their products in accordance with the rules of these three classes.

According to the standard and the actual situation of different ICs, this document will offer recommendations for measures to assist users’ products to pass the IEC 60730 certification. It will also explain the corresponding clauses in the IEC 60730 and test contents to help users understand the requirements of each test item more clearly, so that they can develop targeted self-test programs to accelerate the process to obtain certification.

Functional Description

The IEC 60730 standard defines three classes of household appliances, the differences between them are as follows.

Class A: This class is for situations where appliance safety does not rely on software or where the appliances will not cause injuries, an example of which could be LED lighting products. As no software certification is required, this class will not be explained in this document.

Class B: Control functions to prevent injuries due to unsafe operation of household appliances, such as electronically controlled washing machine door locks, motor thermal shutdown mechanisms etc.

Class C: Control functions to prevent special hazards such as hazardous explosions which may occur in electronic ignition gas stoves.

Class B Test Summary Table

		Item

		Component/Function

		Fault/Error

		Certification Measures

		Definition

		1.1

		CPU/Registers

		Stuck-at fault

		Periodic self-test using static memory test – uses data 0x55, 0xAA to check each CPU register

		H.2.19.6

		1.3

2

3

6.3

		CPU/Program counter

Interrupt handling and execution

Clock

External communication/Timing

		Stuck-at fault

No interrupt or too frequent interrupt

Wrong frequency

Wrong point in time/wrong sequence

		Independent time-slot monitoring and logical monitoring

		H.2.18.10.3

		4.1

4.3

5.1

5.2

		Invariable memory

Addressing to invariable memory

Internal data path to invariable memory

Addressing to invariable memory

		All single bit faults

Stuck-at fault

Stuck-at fault

Wrong address

		Periodic modified checksum

or

Periodic CRC-16 check

		H.2.19.3.1

H.2.19.4.2

		4.2

4.3

5.1

5.2

		Variable memory

Addressing to variable memory

Internal data path to variable memory

Addressing to variable memory

		DC fault

Stuck-at fault

Stuck-at fault

Wrong address

		Periodic self-test using static memory test – March C- algorithm or March X algorithm

		H.2.19.6

		6.1

6.2

		External communication/Data

External communication/Addressing

		Hamming distance ≥ 3

Wrong address

		Transfer redundancy including data, address – positive code and inverse code

		H.2.18.2.2

		7.1

7.2.1

7.2.2

5.1

5.2

		Digital I/O

Analog I/O (A/D and D/A)

Analog multiplexer

Internal data path to I/O component

Addressing to I/O component

		Fault conditions specified in H.27

Fault conditions specified in H.27

Wrong addressing

Stuck-at fault

Wrong address

		Plausibility check

		H.2.18.13

		

		Watchdog (independent clock source)

		Too fast/too slow/clock stuck

		Reset CPU after time-out – test once after power-on

		

Class C Test Summary Table

		Item

		Component/Function

		Fault/Error

		Certification Measures

		Definition

		1.1

		CPU/Registers

		DC fault

		Periodic self-test using walkpat memory test

		H.2.19.7

		1.2

		CPU/Instruction decoding and execution

		Wrong decoding and execution

		Periodic self-test using equivalence class test

		H.2.18.5

		1.3

2

3

		CPU/Program counter

Interrupt handling and execution

Clock

		DC fault

No interrupt or too frequent interrupt

Wrong frequency

		Independent time-slot monitoring and logical monitoring

		H.2.18.10.3

		1.4

1.5

		CPU/Addressing

Data paths instruction decoding

		DC fault

DC fault and wrong execution

		Covered by 1.2, 4.3, 5.1, 5.2

		

		4.1

4.3

5.1

5.2

		Invariable memory

Addressing to invariable memory

Internal data path to invariable memory

Addressing to invariable memory

		99.6% coverage of all information errors

DC fault

DC fault

Wrong addressing and multiple addressing

		Periodic CRC-16 check

		H.2.19.4.2

		4.2

4.3

5.1

5.2

		Variable memory

Addressing to variable memory

Internal data path to variable memory

Addressing to variable memory

		DC fault and cross links

DC fault

DC fault

Wrong addressing and multiple addressing

		Periodic self-test using walkpat memory test

		H.2.19.7

		6.1

6.2

		External communication/Data

External communication/Addressing

		Hamming distance ≥ 4

Wrong and multiple addressing

		CRC-16 check including data, address

		H.2.19.4.2

		6.3

		External communication/Timing

		Wrong point in time/wrong sequence

		Time-slot monitoring

		H.2.18.10.4

		7.1

7.2.1

7.2.2

5.1

5.2

		Digital I/O

Analog I/O (A/D and D/A)

Analog multiplexer

Internal data path to I/O component

Addressing to I/O component

		Fault conditions specified in H.27

Fault conditions specified in H.27

Wrong addressing

DC fault

Wrong addressing and multiple addressing

		Testing pattern for input/output

		H.2.18.22

		

		Watchdog (independent clock source)

		Too fast/too slow/clock stuck

		Reset CPU after time-out – test once after power-on

		

The two common fault types involved in the IEC 60730 regulations are described below.

Stuck-at Fault: Due to impurities, CMOS gate oxide breakage, electrostatic damage, etc., the memory cells or signal lines are open-circuited or short-circuited – Stuck Open / Stuck at 1/ Stuck at 0.

DC Fault: Multiple fault models between the memory cells or signal lines including stuck-at fault, bridging fault, etc.

Class B Certification Measures

Watchdog

Test Definition: Although not specified in the IEC 60730, regarding the watchdog integrated in the same wafer as the MCU, it is usually required to test whether it is operating normally to avoid the situation that the reset time is too short or too long or the watchdog is stuck. It is also required to use an independent clock source different from the system clock, such as a 32kHz LIRC clock or a 32768Hz crystal clock, to ensure that the MCU’s input/output ports can be asynchronously and correctly reset to a known and safe state if necessary.

Certification Measure: Execute this test once after MCU power-on and before running other programs. Considering the system clock error as well as the frequency shift under different voltage and temperature conditions, the acceptable error range of the watchdog time-out should be appropriately expanded. Refer to the following flowchart.

CPU Registers

Test Definition: Static Memory Test – a fault/error control technique which is intended to detect only static errors.

Certification Measure: Starting from the ACC register, fill all the CPU registers with 0x55 and 0xAA respectively (some certification bodies may require additional data of 0x00 and 0xFF), except for some special purpose registers that may cause CPU abnormities. Then read the register contents and make comparisons to test whether the registers are working normally or not.

CPU Program Counter, Interrupt Handling and Execution, Clock, External Communication Timing

Test Definition: Independent Time-slot and Logical Monitoring – a fault/error control technique in which timing devices with an independent time base are periodically triggered in order to monitor the program function and sequence.

Certification Measure: Token passing method.

CPU Program Counter

A unique token variable can be defined and each subroutine has its own unique token number. Then pass the token through the subroutines and make comparisons to confirm that the subroutines are executed in order. Considering that the memory itself may be faulty, it is necessary to set an inverse code of the token to verify the correctness of the token itself.

Furthermore, first determine the actual run time of the subroutine, then periodically query the token within a fixed time interruption, and compare the token with its previous value to check whether the program remains in the subroutine for too long.

Interrupt and System Clock

Due to the randomness of interrupt occurrences, it is more difficult to implement monitoring. A unique token should be defined for each interrupt, which is used to record the enter times to the present interrupt. Then check the number of occurrences of other interrupts within a periodic interrupt of an independent clock, which is to determine whether there are frequent interrupts or whether no interrupt has occurred.

Two timed interrupts are required in order to monitor the system clock. One uses the system clock as a time base and the other uses an independent clock. The two timed interrupts cross-validate the number of interrupts to detect whether the system clock frequency exceeds the specification.

Invariable Memory

Test Definition: Modified Checksum – a fault/error control technique in which a single word representing the contents of all words in the memory is generated and saved. During the self-test, a checksum is formed from the same algorithm and compared with the saved checksum. This technique recognises all the odd errors and some of the even errors.

CRC-double Word – a fault/error control technique in which at least two words are generated to represent the memory contents. During the self-test, the same algorithm is used to generate the same number of signature words which are compared with the saved words. The CRC-16 algorithm of invariable memory ensures that there is no single bit fault.

Certification Measure: Modified Checksum is recommended for the HT8 series while the CRC-16 algorithm is recommended for the HT32 series. The checksum/CRC signature is pre-stored in the EEPROM or Flash memory.

For the HT8 series of MCUs, the Flash data is composed of a high byte and a low byte and the checksum generated by the compiler also includes two bytes. Refer to the following formula:

CheckSum16 = CheckSum16 + Flash High Byte + Flash Low Byte

The initial value of CheckSum16 is 0x0000. The calculation result, if correct, will be equal to the “Program Checksum” generated by the compiler.

For the HT32 series of MCUs, CRC16-CCITT – x16+x12+x5+1 is recommended. A CRC signature for a 32KB Flash capacity is recommended, which can provide a more reliable detection of single bit fault. If the Flash capacity is larger than 32KB, multiple CRC signatures are allowed. The hardware CRC function is suggested if the Flash capacity is larger than 64KB as the software calculation incurs a greater cost in time.

The following are three methods for CRC software calculation.

1. Calculation in bits: Execute a modulo two division using the first bit of the data and the polynomial to get a remainder. Then shift the remainder to the right by one bit and add the second bit (an addition without carry), then use the result to execute a modulo two division with the polynomial. Follow this way until all the bits have been utilised for the calculation. This method occupies a small space but results in a large calculation amount, which is not recommended for use.

2. Calculation in bytes: Work out 256 16-bit CRC codes corresponding to 0x00~0xFF in advance, which are stored in the Flash memory. Then the program can directly call these CRC codes to execute calculation in bytes. This method occupies a larger space but requires a smaller calculation amount, which is recommended for use.

3. [bookmark: _GoBack]Calculation in half-bytes: Only 16 CRC codes corresponding to 0x0~0xF are required to be stored, the occupied space of which is only 1/16 of the byte calculation method and the calculation amount of which is approximately doubled. This is a compromise between the calculation amount and occupied space.

Variable Memory

Test Definition: Marching Memory Test – a static memory test in which data is written to the memory area under test as in a normal operation. Every cell is then inspected in ascending order and a bit inversion performed on the contents. The inspection and bit inversion are then repeated in descending order.

Certification Measure: Transparent March C- or March X algorithm and dynamic redundancy check of global variables.

The variable memory can be roughly simplified into several functional modules, which are memory matrix, row address decoder, column address decoder, multiplexer, and read/write driving circuit.

Figure 1. Variable Memory Functional Modules

The memory has a complicated structure and there are also complicated fault models corresponding to it, as shown in the following table.

		Fault Model

		Fault Description

		SAF (Stuck-At Fault)

		The memory cells or signal lines remain stuck at a certain logic value – constant 0 or constant 1. It is a common fault in memory manufacturing at present.

		TF (Transition Fault)

		The memory cell cannot be changed from 0 to 1 or from 1 to 0.

		CF (Coupling Fault)

		Changing the data of cell i causes data transition of cell j. The coupling problem of two adjacent cells can be divided into the following three situations:

· CFin – inversion: reading from or writing to memory cell i causes data inversion of cell j

· CFid – idempotent: reading from or writing to memory cell i causes the data of cell j to be fixed at 0 or 1

· CFst – state: writing a constant logic value of 0 or 1 to memory cell i causes a read/write error on cell j

		BF (Bridging Fault)

		Fault of adjacent memory units due to bridging.

		RF (Retention Fault)

		The memory cell cannot maintain its initial logic value after a period of time (T).

		AF (Address decoder Fault)*

		There are four situations: one address cannot be used to access any memory cell; one address can access multiple memory cells; one memory cell cannot be accessed by any address; one memory cell can be accessed by multiple addresses.

		Read/Write Circuit Fault*

		Generally appears as a stuck-at fault or a bridging fault.

* Note: Address decoder faults and read/write circuit faults, which can be modeled and mapped as memory cell faults, will not be detected separately.

With regard to memory faults, there are multiple test algorithms, among which the March algorithm is a commonly used one. Its basic principle is to use a finite state machine to read from and write to all bits one by one. The instructions of this algorithm are relatively simple, only including reading and writing 0/1 as well as address changes. Through continuous reading and writing operations of the memory, almost all memory faults can be detected.

In order to improve the test efficiency, different test steps can be used to derive many variants such as MATS, March C+, March C, March C-, March X, etc., on the March algorithm basis.

The March C- and March X algorithms are suggested according to the program complexity and fault coverage, as shown below.

		Algorithm

		Fault Coverage

		Algorithm Steps

		March C-

		SAF, AF, TF, CF

		(w0); ↑(r0,w1); ↑(r1,w0); ↓(r0,w1); ↓(r1,w0); (r0)

		March X

		SAF, AF, TF, CFin

		↑(w0); ↑(r0,w1); ↓(r1,w0); ↓(r0)

In the above algorithm steps, the meaning of each symbol is as follows.

		Symbol

		Meaning

		↑

		Address ascending order – from address 0 to address (n-1)

		↓

		Address descending order – from address (n-1) to address 0

		No arrow

		Optional address in ascending or descending order

		()

		Single test step – perform read/write operations on a single cell in the order shown in the bracket

		w0, w1

		Write 0 or 1 to a single cell

		r0, r1

		Read from a single cell and verify whether the value is 0 or 1

For example, ↑(r0,w1) means starting from address 0, read and verify whether its data is “0”, then write “1” to address 0. Increase to address 1 and perform read and write operations to the address. Repeat this procedure until all addresses have been tested.

Data test using traditional March algorithm is performed in bits.

Since the variable RAM is arranged in bytes, it is required to expand the test data in order to improve the test efficiency and fault coverage. The expanded data is called data background. Now W1 represents to write a forward data background and W0 represents to write an inverse data background.

8-bit Data Background

		Forward Data Background

		Inverse Data Background

		00000000

		11111111

		01010101

		10101010

		00110011

		11001100

		00001111

		11110000

32-bit Data Background

		Forward Data Background

		Inverse Data Background

		00000000000000000000000000000000

		11111111111111111111111111111111

		01010101010101010101010101010101

		10101010101010101010101010101010

		00110011001100110011001100110011

		11001100110011001100110011001100

		00001111000011110000111100001111

		11110000111100001111000011110000

		00000000111111110000000011111111

		11111111000000001111111100000000

		00000000000000001111111111111111

		11111111111111110000000000000000

Either the March C- or March X test will overwrite the original RAM data. The IEC 60730 standard is required to perform periodic tests, which means that only one test after power-on is insufficient. Therefore, a proper measure called a transparent test should be used in order to not overwrite the original RAM data.

The transparent test needs to divide the RAM into several areas. For example, the RAM is divided into three areas, RAM1, RAM2 and RAM3, among which RAM3 will be a test backup area which is only used to back up the data of other RAM areas during the test. After performing a March test in RAM3, back up the data of RAM1 to RAM3, perform a March test and restore the data. Then execute the same test sequence for RAM2. Disable the interrupt functions before starting the test to avoid the interrupted data becoming abnormal.

Figure 2. Transparent March Test

As the March algorithm test needs a longer time, the whole test can be divided into several fragments and only one RAM area is tested each time. This can avoid situations where the MCU resources are occupied for a long period of time.

The test mentioned above can only detect memory static faults. If any dynamic fault occurs on the memory, i.e., the data stored in the memory is changed without resulting in physical damage to the memory. This could be due to external radiation interference which causes certain memory data to change value, here a dynamic redundancy check method should be used to ensure the data stability.

A dynamic redundancy check of global variables means to store global variables, especially those safety-relevant variables, in an inverse code format into a physical area reserved for redundant storage.

Users need to divide the entire memory into at least three areas:

		Area1: Temporary variable area or for compiler use

		Area2: Global variable storage area

		Area3: Global variable redundancy area

When storing data, first store the data into Area2, then store the inverse code of the data into the corresponding location in Area3. When reading data, read out the data of the corresponding location in Area2 and Area3 simultaneously, then check whether they are the inverse code of each other. If yes, continue the operation, otherwise, enter the error processing program.

External Communication

Test Definition: Transfer Redundancy – a form of code safety in which data is transferred at least twice in succession and then compared. This technique can recognise intermittent errors.

Hamming Distance – a statistical measure representing the capability of code to detect and correct errors. The Hamming distance of two code words is equal to the number of positions different in the two code words, for example, the Hamming distance of “1011101” and “1001001” is 2.

Certification Measure: The transmitter sends an address and data followed by a corresponding inverse code. The receiver compares the consistency of the two to check whether the data transfer is correct after receiving the data.

Additionally, a checksum or CRC signature can be added at the end of a group of data. In this way the transfer correctness can be checked only using one group of data.

I/O

Test Definition: Plausibility Check – a fault/error control technique in which inputs or outputs are checked for inadmissible data.

Testing Pattern – a fault/error control technique used for periodic testing of the input units, output units and interfaces of the controller. A test pattern is introduced to the unit and the results are compared to the expected values. Mutually independent means for introducing the test pattern and evaluating the results are used. The test patterns are constructed so as not to inﬂuence correct control operation.

Certification Measure: Use plausibility check to detect the specified fault status.

For digital I/Os, select an appropriate I/O to output 0 or 1 and then check whether the I/O status is abnormal and whether there is a short circuit or an open circuit between the I/O and the power supply. For critical signal pins that may cause danger, redundant input pins can be used to check whether the signal status is normal.

For analog I/Os, input a constant voltage and perform an A/D conversion, then check whether the converted value is within an acceptable range.

Class C Certification Measures

Watchdog, PC Pointer, Interrupt, Clock, Invariable Memory, External Communication, I/O

Use the same or similar test measures as Class B.

Instruction Decoding and Execution

Test Definition: Equivalence Class Test – a systematic test intended to determine whether the instruction decoding and execution are performed correctly. The test data is derived from the CPU instruction speciﬁcation.

Certification Measure: Instructions are classified as follows:

· Move instructions

· Operation instructions

· Bit and Rotate instructions

· Conditional processing instructions

· Other instructions

Similar instructions are grouped and the input data set is subdivided into speciﬁc data intervals (equivalence classes). Each instruction within a group processes at least one set of test data so that the entire group processes the entire test data set. The test data can be formed from the following:

· Data from a valid range

· 	Data from an invalid range

· 	Data from the boundaries

· 	Extreme values and their combinations

Variable Memory

Test Definition: Walkpat Memory Test – a fault/error control technique in which a standard data pattern is written to the memory area under test as in normal operations. A bit inversion is performed on the ﬁrst cell and the remaining memory area is inspected. Then the ﬁrst cell is again inverted and the memory inspected. This process is repeated for all memory cells under test. A second test is conducted by performing a bit inversion of all cells in the memory under test and proceeding as above. This technique recognises all static bit errors as well as errors in interfaces between memory cells.

Certification Measure: Transparent walkpat test using logic “1” and “0” and dynamic redundancy check of global variables.

The situations where memory cells are in an incorrect state due to the different operations of the adjacent cells in a nine-rectangle-grid, is called Neighborhood Pattern Sensitive Faults (NPSF). The main cause of NPSF is the mutual interference between high-density storage cells. The NPSF detection actually includes detection of stuck-at fault, coupling fault and other types of memory faults.

[image:]

Figre 3

For the walkpat test using logic “1”, first clear the entire RAM to 0, then set the highest bit of the first byte to “1” and check whether the adjacent bits have experienced any changes. Next, right shift the “1” by one bit and check if any adjacent bits have changed state. Repeat the shift operation seven times until the lowest bit has been checked. Then move on to the highest bit of the next byte. Repeat this procedure until the entire RAM has been checked.

During this test, the logic “1” is shifted through the entire RAM step by step from left to right and from top to bottom.

Figure 4

Similar to the above test, the walkpat test using logic “0” is performed by first setting the entire RAM to “1” and then shifting “0” step by step from left to right then from top to bottom.

Figure 5

In the same way as the March algorithm test, the walkpat test will also overwrite the original RAM data. Therefore, it is also necessary to divide the RAM, and then follow the three steps of data backup, walkpat test and data recovery to execute the transparent test and dynamic redundancy check of global variables. For more details, refer to the Invariable Memory section of Class B.

Conclusion

This document has provided some recommended measures based on the IEC 60730 standard and the actual situation of Holtek MCUs, which will assist users’ products to pass the IEC 60730 certification. It has also given a detailed introduction and explanation of some clauses in the IEC 60730 and the corresponding test measures. Users can clearly understand the various test items without the need to read the IEC 60730 text and look for certification measures, and develop targeted self-test programs to speed up the certification process.

Reference Material

“IEC 60730-1: Automatic Electrical Controls for Household and Similar Use”, fourth edition, 2009

HT8 and HT32 series of MCUs’ datasheet and user manual.

[bookmark: OLE_LINK13]Versions and Modification Information

		Date

		Author

		Version

		2021.05.18

		陈康超(chad)

		V1.00

[bookmark: OLE_LINK3][bookmark: OLE_LINK4]

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing on this website ('Information') are for reference only and is subject to change at any time without prior notice and at the discretion of Holtek Semiconductor Inc. and its related companies (hereinafter 'Holtek', 'the company', 'us', 'we' or 'our'). Whilst Holtek endeavors to ensure the accuracy of the Information on this website, no express or implied warranty is given by Holtek to the accuracy of the Information. Holtek shall bear no responsibility for any incorrectness or leakage.

Holtek shall not be liable for any damages (including but not limited to computer virus, system problems or data loss) whatsoever arising in using or in connection with the use of this website by any party. There may be links in this area, which allow you to visit the websites of other companies. These websites are not controlled by Holtek. Holtek will bear no responsibility and no guarantee to whatsoever Information displayed at such sites. Hyperlinks to other websites are at your own risk.

Limitation of Liability

In no event shall Holtek Limited be liable to any other party for any loss or damage whatsoever or howsoever caused directly or indirectly in connection with your access to or use of this website, the content thereon or any goods, materials or services.

Governing Law

This disclaimer is subjected to the laws of the Republic of China and under the jurisdiction of the Court of the Republic of China.

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all changes are effective immediately upon posting to the website.

2

	

[bookmark: OLE_LINK8][bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: _Hlk431588889]AN0584EN V1.00	13 / 13	July 21, 2021

image2.emf

Power On

System Initialisation

Token=0,

Inverse code = one¶s

complement of 0

Subroutine 1

Subroutine N

Ƀ Ƀ

Subroutine N

Token=N-1 ?

Token matches

inverse code ?

Token=N,

Inverse code = one¶s

complement of N

Token=N ?

Token matches

inverse code ?

Return

Error Processing

Program

Subroutine 2 User Program

Y

N

N

Y

N

Y

N

Y

Microsoft_Visio___1.vsdx

Power On
System Initialisation
Token=0,
Inverse code = one’s complement of 0
Subroutine 1
Subroutine N
……
Subroutine N
Token=N-1 ?
Token matches inverse code ?

Token=N,
Inverse code = one’s complement of N

Token=N ?
Token matches
inverse code ?

Return

Error Processing Program

Subroutine 2
User Program
Y
N
N
Y
N
Y
N
Y

image3.emf

Timed

Interrupt 1

System freq.

error normal ?

Error Processing

Program

A interrupt

normal ?

B interrupt

normal ?

Return

Timed Interrupt 2

Interrupt 2 times +1, used to

calculate system frequency

B Interrupt

B interrupt times +1

A Interrupt

A interrupt times +1

System Clock

Source

Independent

Clock Source

Y

Y

Y

N

N

N

Microsoft_Visio___2.vsdx

Timed
Interrupt 1
System freq. error normal ?
Error Processing Program

A interrupt normal ?

B interrupt normal ?

Return

Timed Interrupt 2
Interrupt 2 times +1, used to calculate system frequency
B Interrupt
B interrupt times +1
A Interrupt
A interrupt times +1
System Clock Source
Independent Clock Source
Y
Y
Y
N
N
N

image4.emf

Address Register

Column Address

Decoder

Row Address

Decoder

Read Amplifier

Write Driver

Data Register

Read/Write and

Chip Enable

Address

Data

Output

Data

Input

Memory

Matrix

Microsoft_Visio___3.vsdx

Address Register
Column Address Decoder
Row Address Decoder
Read Amplifier
Write Driver
Data Register
Read/Write and Chip Enable
Address
Data Output
Data Input

Memory Matrix

image5.emf

RAM1

RAM2

March

RAM1

RAM2

RAM1 RAM1

RAM2

March

RAM1

RAM2

RAM1 RAM1

RAM2

RAM2 RAM2

RAM1

March

RAM2

RAM2

RAM1

RAM1 copy to

RAM3,

Verify data

RAM1

March test

RAM3 copy to

RAM1,

Verify data

RAM2 copy to

RAM3,

Verify data

RAM2

March test

RAM3 copy to

RAM2,

Verify data

RAM3

March test

1 2 3 4 5 6 7

Microsoft_Visio___4.vsdx

RAM1
RAM2
March
RAM1
RAM2
RAM1
RAM1
RAM2
March
RAM1
RAM2
RAM1
RAM1
RAM2
RAM2
RAM2
RAM1
March
RAM2
RAM2
RAM1
RAM1 copy to
RAM3,
Verify data
RAM1
March test
RAM3 copy to
RAM1,
Verify data
RAM2 copy to
RAM3,
Verify data
RAM2
March test
RAM3 copy to
RAM2,
Verify data
RAM3
March test
1
2
3
4
5
6
7

image6.png

TWT

1:;3

1] To

=0/1

fﬂ“?

image7.emf

0

b

000 0 0 00

0000 0 0 00

0000 0 0 00

1000 0 0 00

7

b

6

b

5

b

4

b

0

b

1

b

3

b

2

byte A

byte B

byte C

byte D

0

b

000 0 0 00

0000 0 0 00

0000 0 0 00

0100 0 0 00

7

b

6

b

5

b

4

b

0

b

1

b

3

b

2

0

b

000 0 0 00

0000 0 0 00

0000 0 0 00

0010 0 0 00

7

b

6

b

5

b

4

b

0

b

1

b

3

b

2

0

b

000 0 0 00

0000 0 0 00

0000 0 0 00

0001 0 0 00

7

b

6

b

5

b

4

b

0

b

1

b

3

b

2

Microsoft_Visio___5.vsdx

0
b
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
7
b
6
b
5
b
4
b
0
b
1
b
3
b
2
byte A
byte B
byte C
byte D
0
b
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
7
b
6
b
5
b
4
b
0
b
1
b
3
b
2
0
b
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
7
b
6
b
5
b
4
b
0
b
1
b
3
b
2
0
b
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
7
b
6
b
5
b
4
b
0
b
1
b
3
b
2

image8.emf

1

b

111 1 1 11

1111 1 1 11

1111 1 1 11

0111 1 1 11

7

b

6

b

5

b

4

b

0

b

1

b

3

b

2

byte A

byte B

byte C

byte D

1

b

111 1 1 11

1111 1 1 11

1111 1 1 11

1011 1 1 11

7

b

6

b

5

b

4

b

0

b

1

b

3

b

2

1

b

111 1 1 11

1111 1 1 11

1111 1 1 11

1101 1 1 11

7

b

6

b

5

b

4

b

0

b

1

b

3

b

2

1

b

111 1 1 11

1111 1 1 11

1111 1 1 11

1110 1 1 11

7

b

6

b

5

b

4

b

0

b

1

b

3

b

2

Microsoft_Visio___6.vsdx

1
b
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
7
b
6
b
5
b
4
b
0
b
1
b
3
b
2
byte A
byte B
byte C
byte D
1
b
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
7
b
6
b
5
b
4
b
0
b
1
b
3
b
2
1
b
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
7
b
6
b
5
b
4
b
0
b
1
b
3
b
2
1
b
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
7
b
6
b
5
b
4
b
0
b
1
b
3
b
2

image1.emf

Power On

Watchdog

time-out reset ?

Clear watchdog

once

Delay time =

watchdog time-out -

error time

Watchdog

time-out reset ?

Delay time =

error time × 2

Watchdog

time-out reset ?

Error Processing

Program

main function

Total time =

watchdog time-out

+ error time

Watchdog

error flag = 1 ?

Set watchdog error

flag to 1 in advance

Clear watchdog

error flag

When watchdog

resets, RAM data

will be retained

Y

N

N

Y

N Y N

Y

Microsoft_Visio___.vsdx

Power On
Watchdog
time-out reset ?
Clear watchdog once
Delay time = watchdog time-out - error time
Watchdog
time-out reset ?
Delay time =
error time × 2
Watchdog
time-out reset ?
Error Processing Program
main function
Total time = watchdog time-out + error time

Watchdog
error flag = 1 ?

Set watchdog error flag to 1 in advance
Clear watchdog error flag

When watchdog resets, RAM data will be retained
Y
N
N
Y
N
Y
N
Y

image9.wmf

image10.PNG

