Using the HT9200A/B DTMF Generator

A/N: HA0037E

Introduction

The program example shows how to use the HT9200A/B.

Using the Driver

→ Driver Description

- The program contains the initialisation parameters and both serial and parallel mode transmit data for the HT9200A/B as differentiated in the HT9200A.ASM and the HT9200B.ASM programs.

- If the HT9200A is being used then only the HT9200A.ASM data definitions are used. The INIT_SENDER_SERIAL_9200A, SEND_DATA_SERIAL_9200 subroutines are placed in the related locations in the user program. Note that the data definitions should be modified according to the user hardware circuit.

- If the HT9200B Serial Mode is being used then only the HT9200B.ASM data definitions are used. The INIT_SENDER_SERIAL_9200B, SEND_DATA_SERIAL_9200 subroutines are placed in the related locations in the user program. When using the parallel mode it is important that the data definitions in the HT9200B.ASM, INIT_SENDER_PARALLEL_9200B, SEND_DATA_PARALLEL_9200B subroutines are placed in the correct related location. In the same way the data definitions should be modified according to the user hardware circuit.

→ Individual Driver Details

- HT9200A Serial Mode includes 2 sub-routines:
 INIT_SENDER_SERIAL_9200A and SEND_DATA_SERIAL_9200
 INIT_SENDER_SERIAL_9200A:
 Practical Function: Serial Mode initialization program
 Input Parameters: None
 Output Parameters: None
 ROM resources: 6
 RAM Resources: None
Using the HT9200A/B DTMF Generator

STACK Resources: None
SEND_DATA_serial_9200:
Practical Function: HT9200B Serial Mode Data Transfer Program
Input Parameters: SEND_DATA
Output Parameters: None
ROM Resources: 13
RAM Resources: 2
STACK Resources: None

- HT9200B Serial Mode includes 2 sub-routines:
 INIT_SENDER_SERIAL_9200B and SEND_DATA_serial_9200
 INIT_SENDER_SERIAL_9200B:
 Practical Function: Serial Mode initialisation program
 Input Parameters: None
 Output Parameters: None
 ROM Resources: 8
 RAM Resources: None
 STACK Resources: None
 SEND_DATA_serial_9200:
 Practical Function: HT9200B Serial Mode Data Transfer Program
 Input Parameters: SEND_DATA
 Output Parameters: None
 ROM Resources: 13
 RAM Resources: 2
 STACK Resources: None

- HT9200B Parallel Mode includes 2 sub-routines:
 INIT_SENDER_PARALLEL_9200B and SEND_DATA_PARALLEL_9200
 INIT_SENDER_PARALLEL_9200B:
 Practical Function: Serial Mode Initialisation
 Input Parameters: SEND_DATA
 Output Parameters: None
 ROM Resources: 9
 RAM Resources: None
 STACK Resources: None
 SEND_DATA_PARALLEL_9200:
 Practical Function: HT9200B Serial Mode Data Transfer Program
 Input Parameters: SEND_DATA
 Output Parameters: None
 ROM Resources: 13
 RAM Resources: 1
 STACK Resources: None
See program comments in: HT9200A.ASM and HT9200B.ASM
Application Example

Application Circuit

- Serial Mode

- Parallel Mode

Application Example Program Description

In the present example, the HT48R30A-1 device is used to control the HT9200A/B DTMF generator. There are two methods to generate the DTMF, Serial Mode and Parallel Mode, therefore three macros are defined, SERIAL_MODE_9200A, SERIAL_MODE_9200B and PARALLEL_MODE, which are used according to whether the serial mode or parallel mode of data is used to generate the DTMF signal. As the HT9200A device only has a Serial Mode and the HT9200B has both Serial and Parallel Mode, a Macro TYPE_MODE is defined, which can according the device type and operating mode execute a conditional assembly. For details consult the HT9200.ASM program.
Flowchart
- Serial Mode

Port Initialisation

Call delay routine

Initialise event counter register and data buffer

Call transmit data sub-routine

Call delay routine

Send stop command data 0FFH

Call delay routine

buffer=buffer+1
count=count-1

Count=0?

No

Yes

Call delay routine
- Parallel Mode

1. Port initialisation
2. Initialise count and buffer register, SET CE
3. Write DTMF data to Data and CLR
4. Call delay routine
5. SET CE, stop DTMF signal transmission
6. Call delay routine
7. buffer=buffer+1
 count=count-1
8. Count=0?
 Yes: Call delay routine
 No: buffer=buffer+1, count=count-1
Device Introduction

The HT9200A/B DTMF generator devices are designed to interface easily with MCUs. The devices can generate 16 Dual Tone frequencies and 8 single tone frequencies, which will be transmitted on the DTMF output pin. The HT9200A supplies a Serial Mode of operation while the HT9200B can choose from both Serial or Parallel operating modes. Both devices are applicable for use in a wide range of applications such as emergency call systems, home automation, telephone line control applications, etc.

The HT9200A is supplied in a 8DIP/SOP package, while the HT9200B is supplied in a 14SOP package.

Serial Mode - HT9200A/HT9200B)

When in the Serial Mode, the HT9200A/B receives its 5-bit data on the DATA pin which is then used to output the required signal on the DTMF pin. This 5-bit data should be provided in the order of D0 to D4. The data must be placed into the output data register before the falling edge of the CLK signal.

The relationship between the Output Frequency and the Serial Data input is as follows:

<table>
<thead>
<tr>
<th>Digit</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
<th>Output Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>697 + 1209</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>697 + 1336</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>697 + 1477</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>770 + 1209</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>770 + 1336</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>770 + 1477</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>852 + 1209</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>852 + 1336</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>852 + 1477</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>941 + 1336</td>
</tr>
<tr>
<td>#</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>941 + 1477</td>
</tr>
</tbody>
</table>
Using the HT9200A/B DTMF Generator

<table>
<thead>
<tr>
<th>Digit</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
<th>Output Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>697+1633</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>770+1633</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>852+1633</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>941+1633</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>697</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>770</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>852</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>941</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1209</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1336</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1477</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1633</td>
</tr>
<tr>
<td>DTMF OFF</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>

Timing Diagram:

Below is a timing diagram illustrating the operation of the DTMF generator. Each bit of the DTMF code is represented by a sequence of pulses on the DATA and DTMF lines. The timing diagram shows the sequence of events required to generate a DTMF code.

- The X2 oscillator is active, providing the necessary frequency.
- The CE, CLK, and DATA lines are used to encode the DTMF digits.
- The DTMF signal is generated based on the encoded data.
Parallel Mode -- HT9200B only

The HT9200B in addition to its Serial Mode of operation also has a Parallel Mode. When the S/P pin is high, the HT9200B will be in its Parallel Mode. When in the Parallel Mode the HT9200B uses its D0~D3 input pins to select the required DTMF frequency. When the CE pin goes from high to low, the input data will be received. The delay between the CE line going low and the generation of the DTMF signal is about 6ms.

The relationship between the Output Frequency and the Parallel inputs is as follows:

<table>
<thead>
<tr>
<th>Digit</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
<th>Output Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>697+1209</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>697+1336</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>697+1477</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>770+1209</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>770+1336</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>770+1477</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>852+1209</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>852+1336</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>852+1477</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>941+1336</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>941+1209</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>697+1633</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>770+1633</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>852+1633</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>941+1633</td>
</tr>
</tbody>
</table>

Timing Diagram:

Note: The data (D0~D3) should be ready before the CE becomes low.